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ABSTRACT 

Linearized equations are set up to describe disturbances in an infinite, 

spatially uniform, relativistic plasma without an ambient magnetic field. It i s  

shown that, as well as the usual electrostatic waves, there also exists a class of 

electromagnetic waves. The two sets of waves are coupled in general, but can 

s t i l l  be classified as mainly longitudinal or mainly transverse. Under the as- 

sumption that the system i s  stable against the longitudinal disturbances it is  

shown that the relativistic plasma wi l l  be unstable to the transverse waves unless 

it is virtually isotropic. 

. 
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1. Introduction 

The average age of cosmic rays in the galactic disc i s  estimated to 

the order of 5.10 years. Also it i s  known from observation that cosmic rays 

isotropic to better than 1% (Greisen, 1956). 
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These two facts, together with the supernovae theory of the origin of 

cosmic rays, make it important to find a mechanism which w i l l  reduce an arbitrary 

amount of anisotropy (since presumably supernovae produce cosmic rays anisotropical- 

ly) to less than about 1% in a time less than, or of the order of, the mean cosmic ray 

lifetime. 

It has been conjectured that interstellar magnetic field irregularities w i l l  

produce some measure of isotropy due to pitch angle scattering. However, not much 

is  known about the scale size of such irregularities. 

It i s  therefore of interest to examine other possible ways of producing 

some degree of isotropy in  an init ially anisotropic relativistic plasma. One such 

possibility i s  particle velocity redistribution due to the influence of plasma waves. 

It i s  well known that i t  is diff icult to make plasma waves carry a significant amount 

of energy but for producing isotropy this is not a prime requirement. In fact, the plasma 

waves need only re-order the plasma distribution function in order to achieve some 

measure of  isotropy. In this sense the waves take on the role of  collisions in a 

classical gas. 

In discussing the behavior of a plasma perturbed by a disturbance, attention 

i s  usually restricted to purely electrostatic waves since these grow in the order of a 

plasma period which, in the absence of an ambient magnetic field, i s  the shortest 

possible time for a dynamical process. 
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However there also exists a class of electromagnetic disturbances whose 

existence has been recognized by several authors (Fried, 1959; Weibel, 1959). 

Such electromagnetic waves have been considered in considerable detail for a non- 

relativistic plasma (Kahn, 1962). 

The main reason for considering such waves is essentially due to the 

conditions attached to making the plasma unstable against the electrostatic mode. 

These conditions are well known (Penrose, 1960). It has been shown (Noerdlinger, 

1961) that the requirements for electrostatic instability are difficult to meet in  

several interesting astrophysical situations. 

I t  is  therefore worthwhile considering the electromagnetic waves since 

the requirements for instability of these waves are much easier to meet. I t  should 

be emphasized that these waves are not the familiar fast electromagnetic waves 

with phase velocities of the order of c, the velocity of light. in  fact i f  the r.m.s. 

- 

velocity spread is (r C 

have amplification rates of the order of 0- times the plasma frequency. Conse- 

quently, they are not nearly as violent us the electrostatic waves. They do have the 

the electromagnetic waves to be considered generally 

advantage that the plasma need not obey such stringent requirements as the electro- 

static mode demands before they become unstable. 

In this analysis we do not allow for a galactic magnetic field despite the 

observational evidence which indicates the existence of such a field with a mean 

strength of about 5 x 10 -6 -r (Gardner and Davies, 1965). The plethora of 

complications which arise when an ambient magnetic f ield is  taken into account 

have been the subject of innumerable papers and books and we make no attempt to 

consider them e 
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In several recent papers (Lerche, 1965a, b, 1966) particular attention 

was paid to the electromagnetic and space charge waves when the relativistic 

plasma was embedded in an infinite, homogeneous magnetic field. In a l l  these 

papers the tacit assumption was made that there was no coupling between the two 

types of wave. We wi l l  demonstrate in  this paper that, in the absence of  an 

ambient magnetic field, coupling exists but barely influences the space charge 

wave. I t  wi l l  also be shown that the coupling seriously perturbs the electro- 

magnetic wave. Thus the assumption of no coupling in an ambient magnetic 

field is  suspect and should be investigated, In particular under the assumption 

of  no coupling it can be shown (Lerche,l965b) that the electromagnetic mode, 

in an ambient magnetic field, does not grow at a physically significant rate: This 

result may not be true when interference is allowed for. 

S o t t h e  cosvv\;c co. Y 9Qs/ 

Thus this paper cannot describe the behavior of the galactic cosmic ray 

gas in the general galactic magnetic field, The motivation behind this work i s  

essentially self-educative. We hope that the results presented here lead to a 

better understanding of the physical behavior of relativistic plasmas, 

As remarked earlier, a similar calculation to the following has been 

performed for a non-relativistic plasma (Kahn, 1962). It is  not immediately ob- 

vious that Kahn's criteria for stability against the electromagnetic waves can be 

applied to a relativistic plasma. We wi l l  show that while the physical sense of 

Kahn's criteria i s  preserved the mathematical formalism changes due to the 

relativistic nature of the problem, 

We wi l l  make no attempt to calculate instability rates for the unstable 

situations. Such a calculation would require a detailed knowledge of the 
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distribution function and in this paper we shall only be concerned with general 

properfies that a distribution function must possess in order to avoid instability. 

Further, since we do not include an ambient magnetic field in the 

calculations, even i f  we were to calculate e-folding times for particular dis- 

tribution functions, we could not)place any reliance on them as measures of 

the speed with which an instability occurs in the galactic cosmic ray gas. 

2. The Dispersion Relation 

We consider only the case of a mobile relativistic proton plasma without 

an ambient magnetic field. I t  suffices to consider one mobile species since the 

theory to be developed uses linearized equations. Thus more than one mobile 

species can easily be taken into account. Along with the proton plasma we assume 

that there exists a cold, smeared outl electron charge background which does not 

contribute to the motion and serves to preserve over-all space charge neutrality. 

We let the equilibrium relativistic proton distribution function be 

f, and the first order linear perturbation to 3, be fi . It i s  

then a simple matter to show that 

Vlasov equation 

f, sa t i s f  ies the I i nea rized re la t iv i s t  ic 
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where G and rr\ are the charge and rest mass of a proton. The 

normalized momentum, & is defined in terms of the real momentum, l3 
through the relation mc$ = ? . Here q and 9 are the 

I*r 

scaler electrostatic and vector electromagnetic potentials respectively. 

We must also satisfy the Maxwell equations 

In addition we must ensure the preservation of the gauge condition 

We choose a particular Cartesian coordinate system and allow all first 

order perturbation quantities to vary as 

We let k be real and positive and (3 complex without 
I 

any loss of generality. 
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Making use of (5) it can easily be shown that the solution to (1) is  given 

by 

where use has been made of the gauge condition in the form 

We now normalize To so that 

when it  can be shown that, with the aid of (3, (2) becomes 

r 
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and the range of integration in (7) and (8) i s  

With the help of (5) i s  may also be shown that (3) can be written 

f 

(10) 

where the 

theses occuring in (a), Here 

Defining 

parentheses in (9) and (10) denote the factor in paren - 
N is the number density of relativistic particles- 

and noting that (8), (9), and (IO) are a l l  linear in 5 , ay +?* J 

we see that for a solution to exist to these three equations we must demand that 
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We have also assumed that f, satisfies the usual convergence 

-> 400 p, Or- i;; conditions as 

From the dispersion equation (1 1) we have a relation between k and f? . 
An unstable situation wi l l  develop if, and only if, a real, positive k exists for 

has a positive imaginary part. 
which r 
3. Some Aspects of the Dispersion Relation. 

One point, which i s  immediately obvious from (1 l), i s  that if i s  real, 

positive and greater than unity a l l  the integrals in (1 1) are completely real since, 

for a l l  values of p) PY o w l  p=. 
This merely states that waves with phase velocities greater than 

we have p < (3 /(I+,$- + , 2 : + ~ > )  . 

C do not resonate 

with the finite rest mass protons which always have sub-luminous velocities. 

Also i t  can readily be shown that, provided fo i s  not pathological, a l l  

the integrals in (1 1) are analytic functions of 

we are looking for temporal instability we choose to define 

in any one half plane. Since 

k real and positive 

in the upper half plane. It i s  then well known that as 

+f e are also from above the resulting functio 

axis (Jackson, 1958), 

and r d m  ((5) --> 0-1- 

analytic on the real 

Suppose we now choose the zero velocity to the mean particle velocity, say. 

6-c we see Then if the equilibrium distribution has a mean velocity half width 

that when (5’> we have 
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Likewise 

and so on. 

For those wuves with phase velocities close to c we have c<< I 
in most physical Situations. Neglecting terms of order 

that in such a case (1 1) reduces to just i t s  diagonul elements, and the electrostatic 

and electromagnetic waves completely decouple, We then obtain the usual relation 

6 L(S-2 we see 

for the electrostatic mode. The corresponding relation for the electromagnetic mode i s  

(13) 

However we are interested in the situation where 

In this case we can replace the factor ( 1 -  15”) by unity in the 

electromagnetic diagonal terms of (1 1). Then the dispersion relation becomes 
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It may happen that a situation i s  chosen with sufficient symmetry so that 

(15) 

In this case the electrostatic and electromagnetic modes completely decouple. 

In general, however, the integrals in (15) wi l l  not vgnish and they introduce cross- 

coupling between the two different types of modes. From (12) we see that the order of 

magnitude calculation shows that we are predominantly interested in those electrostatic 

modes for which 
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In the present situation we are looking at 1 r I << 1 
and in particular we w i l l  assume that 6 =I . Thus we expect 

'L -2 
to be of the order for the electrostatic mode. This i s  much larger 

than mZ= all) which we expect for the electromagnetic mode. Thus as 

far as the electrostatic mode i s  concerned the coupling can be represented to a good 

enough approximation by 

Q 

Setting 

in the second and third diagonal terms, which i s  accurate to the order required, we see 



that (16) becomes 

-13- 

Thus an extra term of order CT 2, times the dominant term has been intro- 

duced. This hardly affects the electrostatic made at a l l  qnd conFequently the usual 

electrostatic dispersion equation is  a good enough approximation to the correct relation, 

However the coupling of the electrostatlc mode to the electromagnetic waves 

i s  not negligible. For the transverse waves, we are interested in values of 

of the order of unity while 

ICr  

for the slow electrostafic wave. Thus as far as the transverse wave i s  concerned a 

good enough approximation to the dispersion relation is 
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It is then a simple matter to show that (18) can be written 
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4. Stability Considerations. 

As has been done in th#lon-relativistic case (Kahn, 1962) we wi l l  now 

demonstrate that the class of electromagnetic waves whose dispersion relation i s  given 

by (19) i s  unstable unless the equilibrium relativistic proton distribution function 

satisfies some rather restrictive conditions. 

We shall consider only the case of even parity distribution functions, i,e.., 

Making use of (20) i t  can easily be shown that 1, I 1 , y  I 

1 3 ,  I 17% ,are real and 1, , 5% I are pure imaginary 

when (5 is  pyre imaginary. We note also that 3x , ’jr , and 

22 are real and positive. 

A sufficient condition for electromagnetic instability i s  that there exist 

a rea 1 , positive 

hand side of (20) i s  real and positive and since 

means that there exists a 

whose f3 has a positive, imaginary part. Since the right 

I this ?= 2x t k‘ Ki2 
in  the upper half complex plane whose corresponding f 

i s  real and greater than 3x ., This i s  so if -5 YY +L 
axis in the upper e i s  real and less than 223, somewhere on the imaginary 

half plane. Hence, by continuity, i f  
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when f3= 0 e 

We can also ignore the class of situation for which 

anywhere in the upper half complex 

wi l l  then be unstable against electrostatic waves. These wi l l  dominate over the slow 

1, i s  real and positive 

(3 plane, since i t  follows that the plasma 

electromagnetic waves. 

Thus the physically interesting situation is thut in which 1, and r,:.6 
are negative on f=;" (9>*), 

On = ; 3 we therefore have 

To avoid instability we require that 

> 

with equality iff and only if, 

Now 

5 ,, i o )  9 LI 9, (o) 
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We now change to spherical momentum coordinates defined by 

so that 

Setting 

we see that (23) becomes 

where /" -- a s @ .  

We note that 
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We now expand in  terms of Legendre polynomials 

0 = 0  I 

where the assumption of,even parity ensures that only even polynomials in 

enter (25), 

Setting 

and 

we see that (24) can be written 
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where the prime denotes differentiation with respect to the argument. 

It can be shown (Kahn, 1962) that 

so that 

It can easily be shown that 

and 

Thus the condition that instability be avoided can be wri,tten 
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To avoid instability this result must hald true not only for the one 

particular direction of the wave chosen, namely along the x-axis, but for any 

direction of the wave normal. 

_*. 

We therefore define a basic direction with respect to which a given wave normal 

(A, 30 ) . With respect to this basic direction we can points into the direction 

write 

are spherical harmonics and the assumption of even parity 
I M where 

ensures that only even harmonics enter(29). 

Expressed with respect to a line parallel to the particular wave normal which 

points into we can write 

(30) 
(h4 ) 

where the sw,,, are suitably chosen constants and (/. 
i s  the associated Legendre polynomial. 

It follows that /c” = I when A =  y = Yo 

and then we have 



-21 - 

Equating harmonics of the same order in (29) and (30) we have 

M -0 

when h = x u ,  3=1)0* 

Thus 

Defining 

we have 

* 

Thus the requirement that instability be avoided can be written 
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Now the average value of any spherical harmonic, of order unity or greater, 

over a sphere is zero. Therefore i f  the sum in  (31) must not be negative for any 

values of x, and I i t  must vanish for a l l  - X,, go . Since 

none of the L~ vanishes it fo lows that 

- 

I 

Making use of (29) we see that this demands 

and must be independent of 1, and 

Denoting the solid angle element by 0P-R 

shown (Landau and Lifschitz, 1951) that 

(32) 

yo 

it can be 

i s  invariant under a Lorentz transformation. 
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Thus from (32) we can say that i f  electromagnetic instability i s  to be avoided 

then the number of relativistic particles moving into any given solid angle must be 

independent of the orientation of the sol id angle. 

When this i s  the case it can easily be seen that 

for a l l  direction of the wave normal. We also have 

in this case. 

The requirement for avoiding electromagnetic instability can be made 

even stronger since we have that 

with equality if, and only if, Iy 0 == I* . 
Now at best the right hand side,of (33) equals - -79, for a l l  

and 1% must-vanish for a l l  
3_ 

directions of the wave normal. Thus Iy 
directions of the wave normal in order that 

than -29, and thus that instability be avoided. 

%Y +-L never be smaller 
I 
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2 (-) and hence i' Both 1, and 

F = 0 . Thus 

i, are pure imaginaryat 

at 

I "  i'" 

a 

Changing to spherical momentum coordinates we have 

With fp given by (30) it can easily be seen that 

We again compare the two representations (29) and (30). We consider a 

particular wave normal through h =  A, I k' = Yo and let 

be measured in the plane containing the wave normal and the basic line. 

Then, near A=ho I 5 3 = &  
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Equating harmonics of equal order in (29) and (30) we see that 

vvl=-O I 

2h 

Hence, near V =  vo we have 

c 
2 

where we have made use of the fact that 
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Let 

Then 

We require that and 1- (a) vanish for - all  values of 

. Hence a similar argument to that employed previously shows that 
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Thus it follows that we must demand 

(38) 

where i s  a constant independent of x ,  P . 
Thus if a relativistic plasma has a distribution function which satisfies (32) 

and (38) then there i s  no unstable electromagnetic disturbance with a real, non-zero 

wave number and zero phase velocity. 

We can re-write (38) as 

(39) 

and we note that where v is the particle 

velocity. Thus (38) demands that the harmonic mean velocity of those particles 

moving in a given solid angle be independent of the spatial orientation of the solid angle. 

When (32) and (38) are satisfied we can show that no electromagnetic disturbance with 

a small imaginary Q and real wave number can exist. To prove this we consider 
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Now 

I,, h )  = 0 
1 

and since 

Likewise 

a b S  

1, are real and IS pure Making use of the fact that - 
i s  pure imaginary it can be shown that f imaginary when 
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and 

Now 

2 -1s' 
Thus in order that 

su f f i c ie n t that 

3 vi./$< ' 
by definition. 

be positive it i s  both necessary and 

J3p < 0 

(41) 

It i s  algebraically complicated, but quite straightforward, to show that (41) 

i s  obeyed. The method of proof consists of changing to spherical. momentum coordinates, 

making use of (32) and expanding as in (29) and (30). 
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Consequently 

and thus 

Likewise it can be shown that je. (;9 >-  9% and 

2. p 3 ) '  - -iF to order 2 . It can also be 
- 

Y 
shown that q,, ( \  5) ol re) As a result, to order , 

the dispersion relation becomes 

, it follows that the 

'5. - =G &>o> i s  less than 

(3 
value. Thus there are no 

r 9, corresponding to 

Consequently no real k exists for the given 

unstable transverse waves which have an imaginary, but small, phase velocity and 

a positive wave number. 
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5. Conclusion. 

Under the assumption that the plasma i s  stable against electrostatic waves, 

it has been shown that the plasma wi l l  support a class of growing transverse waves 

unless the number of protons moving into a given solid angle and their harmonic mean 

velocity are independent of the spatial orientation of the solid angle. This physical 

statement is identical to the result which obtains in  the case of a non-relativistic, 

even parity, plasma (Kahn, 1962) except that the statement i s  now true for a l l  plasmas 

both relativistic and non-relativistic, The mathematical fonrralism of the statement 

i s  changed in the relativistic case so that the conditions for stability remain invariant 

under a Lorentz transformation. 

- 

There are three interesting points worth noting. 

Firstly, in principle it is possible to have pressure isotropy in the relativistic 

plasma and s t i l l  have an electromagnetically unstable situation, In practice it i s  

diff icult to conceive of a physical situation where this wi l l  occur. 
i 

Secondly, we cannot state definitely that a relativistic plasma wi l l  be stable 

i f  i t s  distribution function satisfies (32) and (38) since no account has been given of 

those values of k 
however, state that i f  the distribution function does - not satisfy (32) and (38) then 

the plasma wi l l  be unstable. 

for which the phase velocity i s  different from zero. We can 

Thirdly, we have considered only those waves for which 1 2 &  >? 'i; 1 . 
There s t i l l  remains the class of slow electromagnetic waves for which lp kc 

but I p 1 & 
have not considered distribution functions which are not of even parity. 

. No account has been given of these waves, Also we 
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We have demonstrated that even when this relativistic plasma i s  stable against 

longitudinal waves this i s  no guarantee that the system i s  stable against any wave. We 

have not shown that similar conditions to (32) and (38) hold when an ambient magnetic 

field is introduced into the system. 

Also no instability rates have been calculated. Thus even though the plasma 

i s  unstable to the transverse waves, the e-folding times may be so long that such 

waves are of no physical importance. The author feels, but so far has been unable to 

prove, that such waves probably have physically reasonable e-folding times. Thus 

they may be of importance in producing isotropy in the galactic cosmic ray gas in 

regions where the ambient galactic magnetic field is weak compared to its mean value. 
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